Auvinen, V.-V., P. Laurén, B. Shen, J. Isokuortti, N. Durandin, T. Lajunen, V. Linko and T. Laaksonen (2022). "Nanoparticle release from anionic nanocellulose hydrogel matrix." Cellulose 29(18): 9707-9717. Read more »
Balaji, P., A. Murugadas, L. Paasonen, S. Shanmugaapriya and M. A. Akbarsha (2022). "Efficiency of GrowDex® nanofibrillar cellulosic hydrogel when generating homotypic and heterotypic 3D tumor spheroids." AIMS Biophysics 9(3): 221-234. Read more »
Koivunotko, E., J. Snirvi, A. Merivaara, R. Harjumäki, S. Rautiainen, M. Kelloniemi, K. Kuismanen, S. Miettinen, M. Yliperttula and R. Koivuniemi (2022) "Angiogenic Potential of Human Adipose-Derived Mesenchymal Stromal Cells in Nanofibrillated Cellulose Hydrogel." Biomedicines 10. Read more »
Kyykallio, H., A. V. S. Faria, R. Hartmann, J. Capra, K. Rilla and P. R. M. Siljander (2022). "A quick pipeline for the isolation of 3D cell culture-derived extracellular vesicles." Journal of Extracellular Vesicles 11(10): 12273. Read more »
Merivaara A, Koivunotko E, Manninen K, Kaseva T, Monola J, Salli E, Koivuniemi R, Savolainen S, Valkonen S, Yliperttula M. (2022). "Stiffness-Controlled Hydrogels for 3D Cell Culture Models". Polymers. 14(24):5530. Read more »
Rogers, S., C. Zhang, V. Anagnostidis, M. Fishel, F. Gielen and S. Scholpp (2022). "Cancer-associated fibroblast-derived ROR2 induces WNT/PCP activation and polarized migration in receiving gastric cancer cells." bioRxiv: 2022.2004.2007.487474. Read more »
Trossbach, M., M. de Lucas Sanz, B. Seashore-Ludlow and H. N. Joensson (2022). "A Portable, Negative-Pressure Actuated, Dynamically Tunable Microfluidic Droplet Generator." Micromachines (Basel) 13(11). Read more »
Costa, J., R. Mackay, S.-C. de Aguiar Greca, A. Corti, E. Silva, E. Karteris and A. Ahluwalia (2021). "The Role of the 3Rs for Understanding and Modeling the Human Placenta." Journal of Clinical Medicine 10(15). Read more »
Koivuniemi, R., Xu, Q., Snirvi, J., Lara-Sáez, I., Merivaara, A., Luukko, K., Nuopponen, M., Wang, W., Yliperttula, M. Comparison of the Therapeutic Effects of Native and Anionic Nanofibrillar Cellulose Hydrogels for Full-Thickness Skin Wound Healing. Micro (2021), 1, 194-214. Read more »
Koivunotko, E., A. Merivaara, A. Niemelä, S. Valkonen, K. Manninen, H. Mäkinen, M. Viljanen, K. Svedström, A. Diaz, M. Holler, J. Zini, L. Paasonen, O. Korhonen, S. Huotari, A. Koivuniemi and M. Yliperttula (2021). "Molecular Insights on Successful Reconstitution of Freeze-Dried Nanofibrillated Cellulose Hydrogel." ACS Applied Bio Materials. Read more »
Martin-Sancho, L., Lewinski, M. K., Pache, L., et al., (2021). Functional landscape of SARS-CoV-2 cellular restriction. Molecular Cell, 81(12), 2656–2668.e8. Read more »
Merivaara, A., J. Zini, E. Koivunotko, S. Valkonen, O. Korhonen, F. M. Fernandes and M. Yliperttula (2021). "Preservation of biomaterials and cells by freeze-drying: Change of paradigm." Journal of Controlled Release 336: 480-498. Read more »
Munne, P.M., Martikainen, L., Räty, I. et al. Compressive stress-mediated p38 activation required for ERα + phenotype in breast cancer. Nat Commun 12, 6967 (2021). Read more »
Niklander, J. et al. (2021). "Human Biopsies in Nanofibrillar Cellulose Hydrogel – A Novel Method for Long-term Tissue Culture". Read more »
Posch, W., J. Vosper, A. Noureen, V. Zaderer, C. Witting, G. Bertacchi, R. Gstir, P. A. Filipek, G. K. Bonn, L. A. Huber, R. Bellmann-Weiler, C. Lass-Flörl and D. Wilflingseder (2021). "C5aR inhibition of non-immune cells suppresses inflammation and maintains epithelial integrity in SARS-CoV-2-infected primary human airway epithelia." J Allergy Clin Immunol. Read more »
Singh, B. et al. (2021). "Towards More Predictive, Physiological and Animal-free In Vitro Models: Advances in Cell and Tissue Culture 2020 Conference Proceedings." Alternatives to Laboratory Animals: 02611929211025006. Read more »
Zini, J., J. Kekkonen, V. A. Kaikkonen, T. Laaksonen, P. Keränen, T. Talala, A. J. Mäkynen, M. Yliperttula and I. Nissinen (2021). "Drug diffusivities in nanofibrillar cellulose hydrogel by combined time-resolved Raman and fluorescence spectroscopy." Journal of Controlled Release 334: 367-375. Read more »
Zhang, X., T. Viitala, R. Harjumäki, A. Kartal-Hodzic, J. J. Valle-Delgado and M. Österberg (2021). "Effect of laminin, polylysine and cell medium components on the attachment of human hepatocellular carcinoma cells to cellulose nanofibrils analyzed by surface plasmon resonance." Journal of Colloid and Interface Science 584: 310-319. Read more »
Vallin, J., Grantham, J. Functional assessment of the V390F mutation in the CCTδ subunit of chaperonin containing tailless complex polypeptide 1. Cell Stress and Chaperones (2021). Read more »
Bicer, M., J. Sheard, D. Iandolo, S. Y. Boateng, G. S. Cottrell and D. Widera (2020). "Electrical Stimulation of Adipose-Derived Stem Cells in 3D Nanofibrillar Cellulose Increases Their Osteogenic Potential." Biomolecules 10(12). Read more »
Chang H-T et al. An engineered three-dimensional stem cell niche in the inner ear by applying a nanofibrillar cellulose hydrogel with a sustained-release neurotrophic factor delivery system. Acta Biomaterialia, Available online 7 March 2020. Read more »
Ferreira, F. V., C. G. Otoni, K. J. De France, H. S. Barud, L. M. F. Lona, E. D. Cranston and O. J. Rojas (2020). "Porous nanocellulose gels and foams: Breakthrough status in the development of scaffolds for tissue engineering." Materials Today. Read more »
Heuer, R. A., K. T. Nella, H.-T. Chang, K. Coots, A. Oleksijew, C. Roque, L. H. A. Silva, T. McGuire, K. Homma and A. J. Matsuoka (2020). "Three-Dimensional Otic Neuronal Progenitor Spheroids Derived from Human Embryonic Stem Cells." Tissue Engineering Part A. Read more »
Kögler, M., J. Itkonen, T. Viitala and M. G. Casteleijn (2020). "Assessment of recombinant protein production in E. coli with Time-Gated Surface Enhanced Raman Spectroscopy (TG-SERS)." Scientific Reports 10(1): 2472. Read more »
Manninen, H., N. Durandin, A. Hopia, E. Vuorimaa-Laukkanen and T. Laaksonen (2020). "Taste compound – Nanocellulose interaction assessment by fluorescence indicator displacement assay." Food Chemistry 318: 126511. Read more »
Phiwchai, I., T. Thongtem, S. Thongtem and C. Pilapong (2020). "Liver Cancer Cells Uptake Labile Iron via L-type Calcium Channel to Facilitate the Cancer Cell Proliferation." Cell Biochemistry and Biophysics. Read more »
Sarvazyan, N. (2020). Scaffolds and Tissue Decellularization. Tissue Engineering: Principles, Protocols, and Practical Exercises. N. Sarvazyan. Cham, Springer International Publishing: 103-114. Read more »
Wang, X., Q. Wang and C. Xu (2020). "Nanocellulose-Based Inks for 3D Bioprinting: Key Aspects in Research Development and Challenging Perspectives in Applications-A Mini Review." Bioengineering (Basel) 7(2). Read more »
Yadav, C., A. Saini, W. Zhang, X. You, I. Chauhan, P. Mohanty and X. Li (2020). "Plant-based nanocellulose: A review of routine and recent preparation methods with current progress in its applications as rheology modifier and 3D bioprinting." International Journal of Biological Macromolecules. Read more »
Kiiskinen J. et al. Nanofibrillar cellulose wound dressing supports the growth and characteristics of human mesenchymal stem/stromal cells without cell adhesion coatings. Stem Cell Research & Therapy 2019, 10:292. Read more »
Chen Y.-J. et al. iPreP is a three-dimensional nanofibrillar cellulose hydrogel platform for long-term ex vivo preservation of human islets. Journal of Clinical Investigation 2019, 4 (21). Read more »
Mikkonen P. et al. Next generation sequencing for cancer precision medicine. Drug Target Review 2019, 3, 8-11. Read more »
Zaderer V. et al. Turning the World Upside-Down in Cellulose for Improved Culturing and Imaging of Respiratory Challenges within a Human 3D Model. Cells 2019, 8, 1292. Read more »
Sheard J. et al. Optically Transparent Anionic Nanofibrillar Cellulose Is Cytocompatible with Human Adipose Tissue-Derived Stem Cells and Allows Simple Imaging in 3D. Stem Cells International 2019. In press. Read more »
Charbonneau A. et al. 3D Culture Histology Cryosectioned Well Insert Technology Preserves the Structural Relationship between Cells and Biomaterials for Time-Lapse Analysis of 3D Cultures. Biotechnology Journal 2019 Nov 14(11). Read more »
Auvinen V-V. et al. Effects of nanofibrillated cellulose hydrogels on adipose tissue extract and hepatocellular carcinoma cell spheroids in freeze-drying. Cryobiology 2019. In Press. Read more »
Harjumäki R. et al. Quantified forces between HepG2 hepatocarcinoma and WA07 pluripotent stem cells with natural biomaterials correlate with in vitro cell behavior. Scientific Reports 2019; 9, 7354. Read more »
Koivuniemi R. et al. Clinical Study of Nanofibrillar Cellulose Hydrogel Dressing for Skin Graft Donor Site Treatment. Advances in Wound Care 2019. Read more »
Barnawi R. et al. β1 Integrin is Essential for Fascin-Mediated Breast Cancer Stem Cell Function and Disease Progression. International Journal of Cancer 2019. Read more »
Nugroho RWN, Harjumäki R et al. Quantifying the interactions between biomimetic biomaterials – collagen I, collagen IV, laminin 521 and cellulose nanofibrils – by colloidal probe microscopy. Colloids and Surfaces B: Biointerfaces 2019. Volume 173, p.571-580. Read more »
Nuutila, K., A. Laukkanen, A. Lindford, S. Juteau, M. Nuopponen, J. Vuola and E. Kankuri (2018). "Inhibition of Skin Wound Contraction by Nanofibrillar Cellulose Hydrogel." Plastic and Reconstructive Surgery 141(3). Read more »
Laurén, P., H. Paukkonen, T. Lipiäinen, Y. Dong, T. Oksanen, H. Räikkönen, H. Ehlers, P. Laaksonen, M. Yliperttula and T. Laaksonen (2018). "Pectin and Mucin Enhance the Bioadhesion of Drug Loaded Nanofibrillated Cellulose Films." Pharmaceutical Research 35(7): 145. Read more »
Broguiere N. et al. Growth of Epithelial Organoids in a Defined Hydrogel. Advanced Materials 2018; Volume 30. Read more »
O'Donnell et al. Cellulose-based scaffolds for fluorescence lifetime imaging-assisted tissue engineering. Acta Biomaterialia 2018; Volume 80, p.85-96. Read more »
Flotow H. et al. High Throughput Screening capable assays in 3D. Drug Target review 2018; Issue #1, Assays-In-Depth Focus, p.8-10. Read more »
Dumanli, A. G. (2017). "Nanocellulose and its Composites for Biomedical Applications." Current Medicinal Chemistry 24(5): 512-528. Read more »
Paukkonen, H., M. Kunnari, P. Laurén, T. Hakkarainen, V.-V. Auvinen, T. Oksanen, R. Koivuniemi, M. Yliperttula and T. Laaksonen (2017). "Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release." International Journal of Pharmaceutics 532(1): 269-280. Read more »
Laurén P. et al., Nanofibrillar cellulose-alginate hydrogel coated surgical sutures as cell-carrier systems. PLoS ONE 2017; 12(8):e0183487 Read more »
Reijonen V. et al. Multicellular dosimetric chain for molecular radiotherapy exemplified with dose simulations on 3D cell spheroids. Physica Medica 2017; Volume 40, p.72-78. Read more »
Azoidis, I., et al., Three-dimensional cell culture of human mesenchymal stem cells in nanofibrillar cellulose hydrogels. MRS Communications 2017; p. 1-8. Read more »
Rinner B. et al. MUG-Mel2, a novel highly pigmented and well characterized NRAS mutated human melanoma cell line. Scientific Reports 2017; 7, 2098. Read more »
Pilapong C. et al. Development of targeted multimodal imaging agent in ionizingradiation-free approach for visualizing hepatocellular carcinoma cells. Sensors and Actuators B: Chemical 2017; 245, 683–694. Read more »
Paukkonen H. et al. Hydrophobin-nanofibrillated cellulose stabilized emulsions for encapsulation and release of BCS class II drugs. European Journal of Pharmaceutical Sciences 2017;100: 238-248. Read more »
Hakkarainen T. et al. Nanofibrillar cellulose wound dressing in skin graft donor site treatment. Journal of Controlled Release 2016; 16, 292-301. Read more »
Mertaniemi, H., C. Escobedo-Lucea, A. Sanz-Garcia, C. Gandía, A. Mäkitie, J. Partanen, O. Ikkala and M. Yliperttula (2016). "Human stem cell decorated nanocellulose threads for biomedical applications." Biomaterials 82: 208-220. Read more »
Lou Y.-R, et al. Silica bioreplication preserves three-dimensional spheroid structures of human pluripotent stem cells and HepG2 cells. Scientific Reports 2015; 5, 13635. Read more »
Malinen MM, et al. Differentiation of liver progenitor cell line to functional organotypic cultures in 3D Nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials 2014;35:5110-5121. Read more »
Lou Y.-R. et al. The use of Nanofibrillar cellulose hydrogel as a flexible three-dimensional model to culture human pluripotent stem cells, Stem cell and development 2014; Vol. 23:4, pp. 380–392. Read more »
Laurén P. et al. Technetium-99m-labeled nanofibrillar cellulose hydrogel for in vivo drug release. Eur J Pharm Sci. 2014 Dec 18;65:79-88. Read more »
Kolakovic, R., et al., (2012). Nanofibrillar cellulose films for controlled drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 82(2): p. 308-315. Read more »
Kolakovic, R., T. Laaksonen, L. Peltonen, A. Laukkanen and J. Hirvonen (2012). "Spray-dried nanofibrillar cellulose microparticles for sustained drug release." International Journal of Pharmaceutics 430(1): 47-55. Read more »
Bhattacharya M. et al. Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture, Journal of Controlled Release 2012; 164:3, pp. 291–298. Read more »