Taste compound – Nanocellulose interaction assessment by fluorescence indicator displacement assay

Manninen, H., N. Durandin, A. Hopia, E. Vuorimaa-Laukkanen and T. Laaksonen (2020)

Abstract

"Interactions between taste compounds and nanofibrillar cellulose were studied. For this, a new fluorescent indicator displacement method was developed. Two fluorescent indicators, namely, Calcofluor white and Congo red, were chosen because of their specific binding to cellulose and intrinsic fluorescence. Seven taste compounds with different structures were successfully measured together with nanofibrillar cellulose (NFC) and ranked according to their binding constants. The most pronounced interactions were found between quinine and NFC (1.4 × 104 M−1), whereas sucrose, aspartame and glutamic acid did not bind at all. Naringin showed moderate binding while stevioside and caffeine exhibited low binding. The comparison with microcrystalline cellulose indicates that the larger surface area of nanofibrillated cellulose enables stronger binding between the binder and macromolecules. The developed method can be further utilized to study interactions of different compound classes with nanocellulose materials in food, pharmaceutical and dye applications, using a conventional plate reader in a high-throughput manner."

 

Read publication

 

Manninen, H., N. Durandin, A. Hopia, E. Vuorimaa-Laukkanen and T. Laaksonen (2020). "Taste compound – Nanocellulose interaction assessment by fluorescence indicator displacement assay." Food Chemistry 318: 126511.

Hit-to-Lead Optimization in Drug Discovery
Explore more | 27 min

Hit-to-Lead Optimization in Drug Discovery

Read more
Effects of Scaffolds on Urine- and Urothelial Carcinoma Tissue-Derived Organoids from Bladder Cancer Patients
Story | 1 min

Effects of Scaffolds on Urine- and Urothelial Carcinoma Tissue-Derived Organoids from Bladder Cancer Patients

Read more
Automated Screening Workflows with Animal-free Nanofibrillar Cellulose 3D hydrogels
Story | 1 min

Automated Screening Workflows with Animal-free Nanofibrillar Cellulose 3D hydrogels

Read more