Taste compound – Nanocellulose interaction assessment by fluorescence indicator displacement assay

Manninen, H., N. Durandin, A. Hopia, E. Vuorimaa-Laukkanen and T. Laaksonen (2020)

Abstract

"Interactions between taste compounds and nanofibrillar cellulose were studied. For this, a new fluorescent indicator displacement method was developed. Two fluorescent indicators, namely, Calcofluor white and Congo red, were chosen because of their specific binding to cellulose and intrinsic fluorescence. Seven taste compounds with different structures were successfully measured together with nanofibrillar cellulose (NFC) and ranked according to their binding constants. The most pronounced interactions were found between quinine and NFC (1.4 × 104 M−1), whereas sucrose, aspartame and glutamic acid did not bind at all. Naringin showed moderate binding while stevioside and caffeine exhibited low binding. The comparison with microcrystalline cellulose indicates that the larger surface area of nanofibrillated cellulose enables stronger binding between the binder and macromolecules. The developed method can be further utilized to study interactions of different compound classes with nanocellulose materials in food, pharmaceutical and dye applications, using a conventional plate reader in a high-throughput manner."

 

Read publication

 

Manninen, H., N. Durandin, A. Hopia, E. Vuorimaa-Laukkanen and T. Laaksonen (2020). "Taste compound – Nanocellulose interaction assessment by fluorescence indicator displacement assay." Food Chemistry 318: 126511.

Basement membrane hydrogels dampen CAR-T cell activation: Nanofibrillar Cellulose gels as alternative to preserve T-cell function in 3D cell cultures
Position Paper | 3 min

Basement membrane hydrogels dampen CAR-T cell activation: Nanofibrillar Cellulose gels as alternative to preserve T-cell function in 3D cell cultures

Read more
The Story of UPM’s Nanocellulose Hydrogel
Story | 8 min

The Story of UPM’s Nanocellulose Hydrogel

Read more
Breakthroughs in Biomedical Innovation: Highlights from the 10th Annual Conference
Story | 6 min

Breakthroughs in Biomedical Innovation: Highlights from the 10th Annual Conference

Read more